

Understanding water analyses

Lindi Grobler

M.Sc. Soil Science & Plant Nutrition
(Pri. Sci. Nat.)

Agri-Alchemi

Consultation, research and training for agriculture

Parameters of water analysis

Conversions

Discussing parameters individually

Parameters of water analysis

Parameter analysed	Full name	Unit of analysis	
рН		No unit	
EC	Electrical conductivity	mS.m ⁻¹ or mS.cm ⁻¹	
SAR	Sodium Adsorption ratio	No unit	
USDA Classification		S and C Classification	
TDS	Total dissolved solids	${ m mg.}\ell^{ ext{-}1}$	
	Calcium (Ca ²⁺)		
	Magnesium (Mg ²⁺)		
Cations	Potassium (K+)	mg. $\ell^{\text{-}1}$ or me. $\ell^{\text{-}1}$	
	Sodium (Na+)		
	Ammonium (NH ₄ +)		
	Sulphate (SO ₄ ²⁻)		
Anions	Nitrate (NO ₃ ⁻)		
	Chloride (Cl ⁻)	200 cm 0-1 cm 200 0-1	
۸ ۱۱ - ۱ ^۰ - ^۱ - ₋ (۱ ^۱)	Bicarbonate (HCO ₃ -)	$-$ mg. $\ell^{\text{-}1}$ or me. $\ell^{\text{-}1}$	
Alkalinity (and anions)	Carbonate (CO ₃ ²⁻)		
Hardness	Calcium Carbonate (CaCO ₃)		
	Iron (Fe)		
Micronutrients	Boron (B)	$-\mu \mathrm{g.}\ell^{-1}$	
	Manganese (Mn)		
	Fluoride (F)		

Elemental information for conversions

	Element	Symbol	Valency	Atomic weight	Equivalent weight
	Calcium	$\mathrm{Ca^{2+}}$	2	40	20
	Magnesium	$ m Mg^{2+}$	2	24	12
Cations	Potassium	K ⁺	1	39	39
	Sodium	Na ⁺	1	23	23
	Ammonium	NH ₄ ⁺	1	18	18
Anions	Sulphate	$\mathrm{SO_4}^{2 ext{-}}$	2	69	48
	Carbonate	$\mathrm{CO_3}^{2 ext{-}}$	2	60	30
	Bicarbonate	HCO_3^-	1	61	61
	Nitrate	NO_3^-	1	62	62
	Chloride	Cl-	1	35.5	35.5

Elemental information for conversions

	Element	Symbol	Valency	Atomic weight	Equivalent weight
	Calcium	$\mathrm{Ca^{2+}}$	2	40	20
	Magnesium	${ m Mg^{2+}}$	2	24	12
	Potassium	K^{+}	1	39	39
	Sodium	Na ⁺	1	23	23
	Ammonium	$\mathrm{NH_4}^+$	1	18	18
	Sulphate	$\mathrm{SO_4}^{2 ext{-}}$	2	69	48
	Carbonate	$\mathrm{CO_3}^{2^-}$	2	60	30
Anions	Bicarbonate	HCO_3^{-1}	1	61	61
	Nitrate	NO_3^-	1	62	62
	Chloride	Cl^{-}	1	35.5	35.5

Unit conversions

- 1 dS.m⁻¹ = 100 mS.m⁻¹ = 100 mmho.m⁻¹ = 1000 μ mho.cm⁻¹
- $1 \text{ mg.} \ell^{-1} = 1 \text{ ppm}$
- Conversions
 - Equivalent weight

Equivalent weight =
$$\frac{\text{atomic weight}}{\text{valancy}}$$

• mg.
$$\ell^{-1}$$
 to me. ℓ^{-1}

$$me.\ell^{-1} = \frac{mg.\ell^{-1}}{equivalent weight}$$

• me.
$$\ell^{-1} = \text{mmol.}^{-1}$$

$$mmol.\ell^{-1} = \frac{me.\ell^{-1}}{valency}$$

• TDS

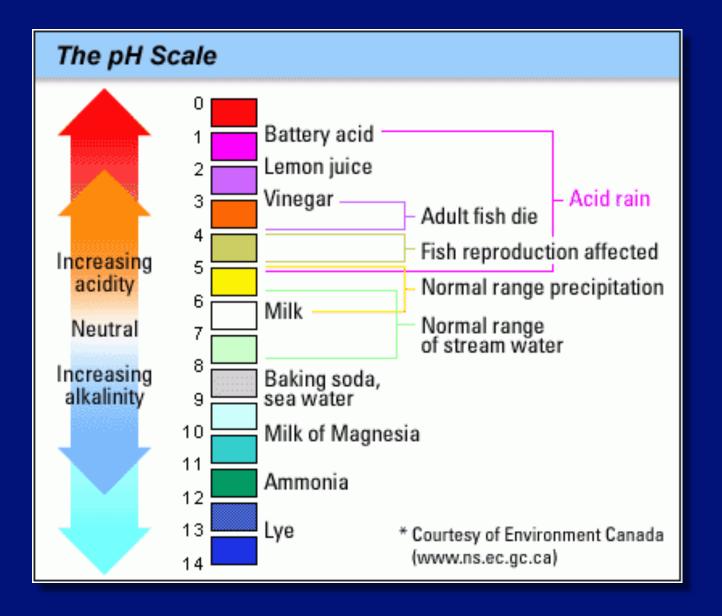
TDS = EC (mS.m
$$^{-1}$$
) x 6.4
if EC < 500 mS.m $^{-1}$

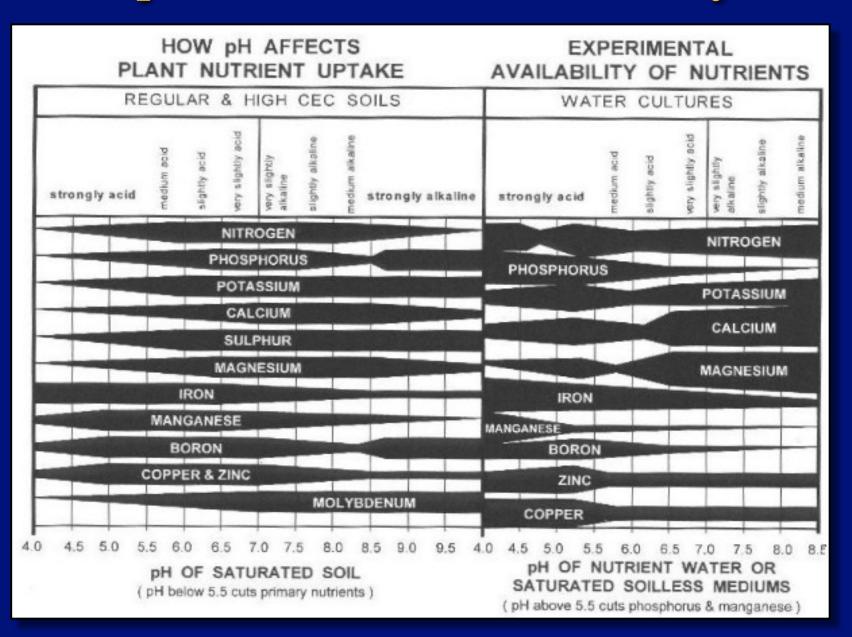
REMEMBER

$$\sum$$
 Cations = \sum Anions if in me. ℓ^{-1}

EC: Electrical Conductivity

- Electrical Conductivity
 - Amount of dissolved salts or nutrients or concentration of ions in the water
 - NOT a measure of what nutrients are in the water




EC: Electrical conductivity

Use for water	Optimal range	Remarks	
Use for water	${ m mS.m^{ ext{-}1}}$	Remarks	
	< 25	No chances of sodification	
	25 - 100	Low danger of sodification	
Irrigation of open fields	101 - 125	Chances of sodification	
	106 - 175	Specialist management necessary	
	> 176	Serious danger of sodification	
	< 50	Ideal	
Hydroponics	10 - 100	Usable but crop dependent	
	> 101	Specialist management necessary	
Human consumption	< 300	Usable but dependent on salts in water	
Animals (Chickens)	< 75	Ideal	
Animals (Sheep/cattle)	< 300	Dependant on salts present	

pH scale

pH = Nutrient availability

Shattering the myth....

Adding acid to reduce pH of water?

So, I am not really reducing the pH?

- Acid do not reduce the pH of water but it neutralizes bicarbonate and carbonate concentration
 - If pH is below 8.3

```
Ca(HCO_3)_2 + H_2O \longrightarrow Ca^{2+}ion + HCO^{3-}ion + OH^-ion Calcium + Water calcium + bicarbonate + hydroxide
```

```
Mg(HCO_3)_2 + H_2O \longrightarrow Mg^{2+}ion + HCO^{3-}ion + OH^-ion

Magnesium + Water magnesium + bicarbonate + hydroxide

Bicarbonate
```

So, I am not really reducing the pH?

- Acid do not reduce the pH of water but it neutralizes bicarbonate and carbonate concentration
 - If pH is above 8.3

So, what am I doing?

 $Ca(HCO_3)_2$ and/or $Mg(HCO_3)_2$ and/or $CaCO_3$ and/or $MgCO_3$ (only if pH > 8)

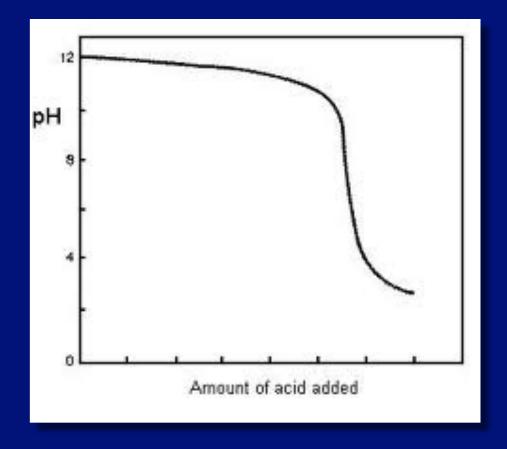
- When acid is added to water the acid or H⁺ ion neutralize bicarbonate and carbonates
 - If Bicarbonate: H^+ (from acid) + $HCO_3^ \longrightarrow$ CO_2 (g) + H_2O (ℓ)
 - If Carbonates: H^+ (from acid) + $CO_3^{2^-}$ \longrightarrow H^- (from acid) + $H^ H^ H^$

Water is now UNBUFFERED

So, what am I doing?

Unbuffered: a solution with an unstable hydrogen ion concentration

therefore


what ever you add to the water will stabilise the hydrogen ion concentration and thus establish the pH

TIME & VOLUME

I keep adding and adding and nothing happens!

 $pH = - log [H^+] not linier$

TDS: Total dissolved solids

TDS

- Indicates quantity of salts dissolved in the water
- Close relationship between TDS and EC
- 1 mS.m⁻¹ (EC) = 5 7 mg. ℓ^{-1} TDS

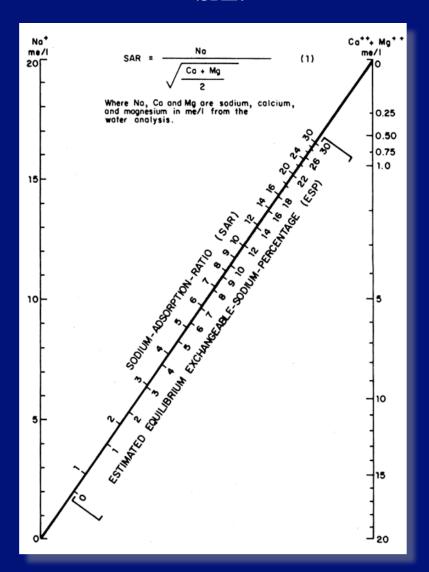
TDS (mg. ℓ -1)	EC (mS.m ⁻¹)	Water quality
0 - 175	0 - 25	Excellent
175 - 500	26 - 75	Good
500 - 1500	76 - 225	Moderate
1500 - 2500	226 - 400	Serious
> 2500	>401	Unsuitable

SAR: Sodium Adsorption Ratio

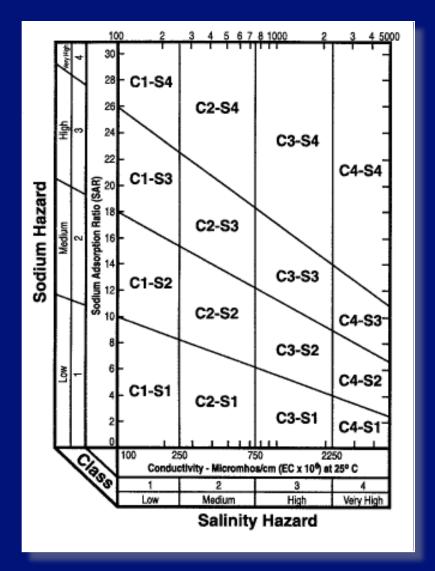
• SAR

• Indicates the relationship between elements calcium, magnesium and sodium

$$SAR = \frac{Na}{\sqrt{\frac{Ca + Mg}{2}}}$$


$$me.\ell^{-1}$$

SAR				
< 1.00	No problem expected			
1.00 - 3.00	Special attention need to be given to water infiltration into the soil and possible crust formation on the soil			
> 3.00	Specialist soil and irrigation management is imperative			


• Close relationship between USDA classification

SAR & USDA classification

SAR

USDA classification

USDA C-classification

	Salt concentration				
O 1	$0 - 0.25 \text{ mS.cm}^{-1}$	Water may be used for any application			
C1	Low salt concentration	No additional drainage necessary			
C2	$0.25-0.75~\mathrm{mS.cm^{-1}}$	Water may be used for any application			
U2	Medium salt concentration	Small percentage of drainage necessary			
$\begin{array}{c} 0.75-2.25 \ \mathrm{mS.cm^{\text{-}1}} \\ \mathrm{High\ salt\ concentration} \end{array}$	Should not be used in soils with limited drainage				
	High salt concentration	Should only be used of very well drained soil			
C4	$2.25 - 4.00 \mathrm{\ mS.cm^{-1}}$ Very high salt concentration	Not suited for irrigation under normal conditions			
		Additional management required			
$oxed{ ext{C5}}$	> 4.00 mS.cm ⁻¹ Exceptionally high salt concentration	Not suited for irrigation			

USDA S-classification

	Sodium concentration				
S1	SAR 0 - 10 Low sodium concentration	Water may be used for any application No sodification hazard			
S2	SAR $10-18$ Medium sodium concentration	Water has limited application Permeability of water into fine textured soils might be problematic			
S3	$SAR\ 18-25$ High sodium concentration	Water has limited application Adversity to be expected on most soils Drainage of great importance			
S4	SAR 26 Very high sodium concentration	Not suited for irrigation			

C and S classification

- \cdot C2S $\overline{1}$
 - $0.25 0.75 \text{ mS.cm}^{-1}$
 - Medium salt concentration
 - Water may be used for any application
 - Small percentage of drainage necessary
 - SAR 0-10
 - Low sodium concentration may be used for any application
 - No sodification hazard

Optimal nutrient concentrations

Cations	Calcium (Ca)	Magnesium (Mg)	Potassium (K)	Sodium (Na)	Ammonium (NH ₄)
Acceptable $(\text{mg.}\ell^{\text{-1}})$	< 80	< 45	< 1	< 80	< 5

Anions	$ m Sulphate \ (SO_4)$	Chloride (Cl)	$rac{ ext{Nitrate}}{ ext{(NO}_3)}$	$ ext{Carbonate} \ ext{(CO}_3 ext{)}$	$ m Bicarbonate \ (HCO_3)$
Acceptable $({ m mg.}\ell^{ ext{-1}})$	< 40	< 70	< 5	< 80 (pH)	< 122

Water contains nutrients – contributes to crop nutrition

- Example:
 - Water contains 10 g/1000 ℓ Mg (100 ppm or mg. ℓ -1)
 - Irrigate 400 0000 \(\ext{t} \) water
 - Equivalent to 40 kg of Mg = 400 kg MgSO₄

Chlorides

Guideline	Example crops	Allowable concentration $(\mathrm{mg.}\ell^{\text{-1}})$
Chloride free	Oven dried tobacco	< 25
Chloride sensitive	Lettuce	< 53
Non-specific to chloride	Air dried tobacco	< 106
Chloride tolerant	Lucerne, Beetroot	< 175
Foliar feeds	Any	< 106
Hydroponics & potted plants	Any	< 106
Overhead irrigation	Tree crops	< 175
Any irrigation	Grapes, potatoes, tomatoes	< 355
Any irrigation	Barley, maize	< 532
Flood irrigation	Any	< 142
Sprinklers	Any	< 106

Boron

Boron (B)						
	$(\mu g.\ell^{-1})$					
Class	Sensitive crop	Moderate crop	Tolerant crop			
Very good	< 0.33	< 0.67	< 1			
Good	0.33 - 0.67	0.67 - 1.33	1.0 - 2.0			
Fairly high	0.67 - 1.00	1.33 - 2.00	2.0 - 3.0			
High	1.00 - 1.25	2.00 - 2.50	3.0 - 3.7			
Unusable	>1.25	> 2.5	> 3.7			
Crops	Pecan nuts, Prunes, Pears, Apples, Table grapes, Peaches, Citrus, Avocado	Sunflowers, Potatoes, Cotton, Tomatoes, Olives, Wheat, Maize, Pumpkins	Asparagus, Dates, Beetroot, Onions, Cabbage, Salad, Carrots			

Alkalinity – hardness of water

Clarification	Alkalinity
	Calcium Carbonate (CaCO3) (mg.ℓ-1)
Soft	0 - 50
Marginally soft	51 - 100
Slightly hard	101 - 150
Hard	151 - 300
Very hard	301 - 500

